diff --git a/9_The_chase.ipynb b/9_The_chase.ipynb index beb7198aaacdb548c07810ca5b13c056e26d8e5f..243ebc1281e9bd394ab2eb8bcbf0b326f4a658ac 100644 --- a/9_The_chase.ipynb +++ b/9_The_chase.ipynb @@ -34,7 +34,9 @@ { "cell_type": "code", "execution_count": 1, - "metadata": {}, + "metadata": { + "collapsed": true + }, "outputs": [], "source": [ "url = \"https://download.data.grandlyon.com/wfs/rdata?SERVICE=WFS&VERSION=2.0.0&request=GetFeature&typename=jcd_jcdecaux.jcdvelov&outputFormat=application/json;%20subtype=geojson&SRSNAME=EPSG:2154&count=500&startIndex=1\"" @@ -49,45 +51,38 @@ "outputs": [], "source": [ "import requests\n", - "#help(requests)" + "\n", + "proxies = {\n", + " 'http': 'http://proxyhttp1pro:8080',\n", + " 'https': 'http://proxyhttp1pro:8080'\n", + "}\n", + "\n", + "s = requests.Session()" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ - "response = requests.get(url)" + "s.proxies = proxies" ] }, { "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "import pickle\n", - "#with open('response.pkl', 'wb') as fp:\n", - "# pickle.dump(response, fp)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ - "#del response\n", - "with open('response.pkl', 'rb') as fp:\n", - " response = pickle.load(fp)" + "response = s.get(url)" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -128,8 +123,10 @@ " '__weakref__',\n", " '_content',\n", " '_content_consumed',\n", + " '_next',\n", " 'apparent_encoding',\n", " 'close',\n", + " 'connection',\n", " 'content',\n", " 'cookies',\n", " 'elapsed',\n", @@ -153,7 +150,7 @@ " 'url']" ] }, - "execution_count": 6, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -164,7 +161,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -173,7 +170,7 @@ "200" ] }, - "execution_count": 7, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -184,7 +181,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": { "collapsed": true }, @@ -195,16 +192,16 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "{'Access-Control-Allow-Headers': 'Origin, X-Requested-With, Content-Type, Accept', 'Connection': 'close', 'Content-Type': 'application/json; subtype=geojson', 'Transfer-Encoding': 'chunked', 'Server': 'Apache', 'Date': 'Wed, 15 May 2019 11:58:56 GMT', 'Access-Control-Allow-Methods': 'GET,POST,OPTIONS,DELETE,PUT', 'Access-Control-Allow-Origin': '*'}" + "{'Content-Type': 'application/json; subtype=geojson', 'Server': 'Apache', 'Access-Control-Allow-Methods': 'GET,POST,OPTIONS,DELETE,PUT', 'Access-Control-Allow-Headers': 'Origin, X-Requested-With, Content-Type, Accept', 'Transfer-Encoding': 'chunked', 'Date': 'Tue, 02 Jul 2019 16:13:44 GMT', 'Connection': 'close', 'Access-Control-Allow-Origin': '*'}" ] }, - "execution_count": 9, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -388,7 +385,9 @@ { "cell_type": "code", "execution_count": 18, - "metadata": {}, + "metadata": { + "collapsed": true + }, "outputs": [], "source": [ "#data['features']" @@ -542,7 +541,9 @@ { "cell_type": "code", "execution_count": 22, - "metadata": {}, + "metadata": { + "collapsed": true + }, "outputs": [], "source": [ "# initialisation\n", @@ -1117,7 +1118,9 @@ { "cell_type": "code", "execution_count": 32, - "metadata": {}, + "metadata": { + "collapsed": true + }, "outputs": [], "source": [ "geometry_df = pd.DataFrame.from_records(df0['geometry'])" @@ -1133,7 +1136,9 @@ { "cell_type": "code", "execution_count": 33, - "metadata": {}, + "metadata": { + "collapsed": true + }, "outputs": [], "source": [ "df1['x'] = geometry_df.coordinates.apply( lambda row: row[0] )\n", @@ -2257,7 +2262,9 @@ { "cell_type": "code", "execution_count": 42, - "metadata": {}, + "metadata": { + "collapsed": true + }, "outputs": [], "source": [ "X0 = 843968.3\n", @@ -2267,7 +2274,9 @@ { "cell_type": "code", "execution_count": 43, - "metadata": {}, + "metadata": { + "collapsed": true + }, "outputs": [], "source": [ "import math\n", @@ -2303,7 +2312,9 @@ { "cell_type": "code", "execution_count": 45, - "metadata": {}, + "metadata": { + "collapsed": true + }, "outputs": [], "source": [ "df1['distance_from_here'] = df1.apply( lambda row: Euclidean_distance( (row.x, row.y), (X0, Y0)), axis=1 )" @@ -2337,7 +2348,9 @@ { "cell_type": "code", "execution_count": 47, - "metadata": {}, + "metadata": { + "collapsed": true + }, "outputs": [], "source": [ "data['features'].sort(key=lambda x: x['properties']['available_bikes'], reverse=True)"